Sains Malaysiana 52(7)(2023): 2037-2053
http://doi.org/10.17576/jsm-2023-5207-12
The Ameliorative Effects of
Selenium Nanoparticles (SeNPs) on Diabetic Rat Model: A Narrative Review
(Kesan Amelioratif Selenium Nanozarah (SeNPs) pada Model Tikus Diabetik: Suatu Ulasan Naratif)
ANAS AHZARUDDIN AHAMAD TARMIZI1,
SITI HAJAR ADAM2*, NIK NASIHAH NIK RAMLI1, NUR AHFIZAH ABD HADI1, ABDUL MUTALIB
MAISARAH1, SHIRLEY GEE HOON TANG3 & MOHD HELMY
MOKHTAR4
1School of Graduate Studies (SGS), Management and
Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam,
Selangor, Malaysia
2Pre-clinical Department, Faculty of Medicine and
Defence Health, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
3Center for Toxicology and Health Risk Studies (CORE),
Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
4Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia,
Jalan Yaacob Latif, Bandar Tun Razak, Cheras,
56000 Kuala Lumpur, Malaysia
Diserahkan: 6 Disember 2022/Diterima: 7 Julai 2023
Abstract
The emergence of
nanotechnology has become more popular, and the progress had sparked much
development in nanoparticle synthesis, including selenium. Studies associated
with the therapeutic abilities and physicochemical properties of selenium
nanoparticles (SeNPs) are rapidly growing and gaining
interest from many researchers. This review discusses on the fundamental
components of selenium, different approaches in synthesizing selenium
nanoparticles, its remedial properties and potential in biomedical application.
Herein, primary focus will be given to the action of selenium nanoparticles
mechanism in improving diabetes mellitus symptoms and complications in animal
studies. It is known that selenium is an important micronutrient found in
humans, plants and animals that can be incorporated as selenoprotein in the human body. Analysis and comparison on the findings enlighten that SeNPs demonstrated ameliorative effect on diabetes
complications due to their antidiabetic, antioxidant, anti-inflammatory and
lipid-lowering characteristics.
Keywords:
Antidiabetics; diabetes mellitus; green synthesis; nanoparticle; selenium
Abstrak
Kemunculan nanoteknologi telah menjadi popular dan kemajuannya telah mencetus pelbagai perkembangan dalam sintesis nanozarah, termasuklah selenium. Kajian berkaitan dengan kebolehan terapeutik dan sifat fizikokimia selenium nanozarah (SeNPs) telah berkembang pesat dan mendapat tumpuan para penyelidik. Kajian ini membincangkan tentang komponen teras selenium, pendekatan
berbeza dalam sintesis nanozarah selenium dan kebolehan pemulihan serta potensi
dalam aplikasi bioperubatan. Di sini, penulisan menjurus kepada mekanisme
selenium nanozarah dalam memperbaiki simptom dan komplikasi kencing manis dalam
kajian yang bermodelkan haiwan. Umumnya, selenium merupakan mikronutrien
penting yang terdapat pada manusia, tumbuhan dan haiwan yang digunakan sebagai
selenoprotein dalam tubuh manusia. Analisis dan perbandingan pada beberapa
penemuan menjelaskan bahawa SeNPs menunjukkan kesan penyembuhan ke atas
komplikasi kencing manis kerana ciri antidiabetis, antioksidan, anti-radang dan
penurunan lipid.
Kata kunci:
Antidiabetis; kencing manis; nanozarah; selenium; sintesis hijau
RUJUKAN
Abdel Maksoud, H.A., Abou Zaid,
O.A.R., Elharrif, M.G., Omnia, M.A. & Alaa, E.A. 2020. Selenium cleome droserifolia nanoparticles (Se-CNPs) and it’s ameliorative effects
in experimentally induced diabetes mellitus. Clinical Nutrition ESPEN 40: 383-391. https://doi.org/10.1016/j.clnesp.2020.07.016
Abdulmalek,
S.A. & Balbaa, M. 2019. Synergistic effect of nano-selenium and metformin on Type 2 diabetic rat model:
Diabetic complications alleviation through insulin sensitivity, oxidative
mediators and inflammatory markers. PLoS ONE 14(8): e0220779. https://doi.org/10.1371/journal.pone.0220779
Abu-Elghait, M., Hasanin, M., Hashem,
A.H. & Salem, S.S. 2021. Ecofriendly novel
synthesis of tertiary composite based on cellulose and myco-synthesized
selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules 175: 294-303. https://doi.org/10.1016/j.ijbiomac.2021.02.040
Ahmadvand,
H., Shahsavari, G., Tavafi,
M., Bagheri, S., Moradkhani,
M.R., Kkorramabadi, R.M., Khosravi,
P., Jafari, M., Zahabi, K., Eftekhar, R., Soleimaninejad,
M. & Mohhadam, S. 2017. Protective effects of oleuropein against renal injury oxidative damage in alloxan-induced diabetic rats; a histological and
biochemical study. Journal of Nephropathology 6(3): 204-209. https://doi.org/10.15171/jnp.2017.34
Alagesan,
V. & Venugopal, S. 2019. Green synthesis of
selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and
photocatalytic activities. BioNanoScience 9(1): 105-116. https://doi.org/10.1007/s12668-018-0566-8
Alam,
H., Khatoon, N., Khan, M.A., Husain, S.A., Saravanan, M. & Sardar, M.
2020. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus
acidophilus and their enhanced antimicrobial activity against resistant
bacteria. Journal of Cluster Science 31(5): 1003-1011.
https://doi.org/10.1007/s10876-019-01705-6
Amin,
M.A., Ismail, M.A., Badawy, A.A. & Awad, M.A. 2021. Improve the growth performance of Helianthus annuus L. and control of cutworm Agrotis ipsilon. Catalysts 11: 1551.
Azam,
M. & Suriya, A. 2021. Microbial
Nanotechnology: Green Synthesis and Applications. Springer Nature Singapore
Pte Ltd. https://doi.org/10.1007/978-981-16-1923-6
Badgar,
K. & Prokisch, J. 2021. Simple method for
preparing elemental selenium nano-coating inside a
silicone surface. Acta Agraria Debreceniensis 1: 35-43. https://doi.org/10.34101/actaagrar/1/8940
Beere,
H.M., Wolf, B.B., Cain, K., Mosser, D.D., Mahboubi, A., Kuwana, T., Tailor,
P., Morimoto, R.I., Cohen, G.M. & Green, D.R. 2000. Heat-shock protein 70
inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology 2(8): 469-475.
https://doi.org/10.1038/35019501
Benko,
I., Nagy, G., Tanczos, B., Ungvari,
E., Sztrik, A., Eszenyi,
P., Prokisch, J. & Banfalvi,
G. 2012. Subacute toxicity of nano-selenium compared
to other selenium species in mice. Environmental Toxicology and Chemistry 31(12): 2812-2820. https://doi.org/10.1002/etc.1995
Bhardwaj,
M., Yadav, P., Dalal, S. & Kataria,
S.K. 2020. A review on ameliorative green nanotechnological approaches in diabetes management. Biomedicine and Pharmacotherapy 127(April): 110198. https://doi.org/10.1016/j.biopha.2020.110198
Bredesen,
D.E. 2000. Apoptosis: Overview and signal transduction pathways. Journal of Neurotrauma 17(10): 801-810.
https://doi.org/10.1089/neu.2000.17.801
Burhans,
M.S., Hagman, D.K., Kuzma, J.N., Schmidt, K.A. & Kratz, M. 2019. Contribution of adipose tissue inflammation
to the development of Type 2 diabetes mellitus. Comprehensive Physiology 9(1): 1-58. https://doi.org/10.1002/cphy.c170040
Chaudhary,
S., Chauhan, P. & Kumar, R. 2019. Environmental fate descriptors for
glycol-coated selenium nanoparticles: A quantitative multi-assay approach. Nanoscale
Advances 1(12): 4790-4803. https://doi.org/10.1039/c9na00653b
Combs,
G.F., Midthune, D.N., Patterson, K.Y., Canfield,
W.K., Hill, A.D., Levander, O.A., Taylor, P.R., Moler, J.E. & Patterson, B.H. 2009. Effects of selenomethionine supplementation on selenium status and
thyroid hormone concentrations in healthy adults. American Journal of
Clinical Nutrition 89(6): 1808-1814. https://doi.org/10.3945/ajcn.2008.27356
Cui,
Y.H., Li, L.L., Zhou, N.Q., Liu, J.H., Huang, Q., Wang, H.J., Tian, J. &
Yu, H.Q. 2016. In vivo synthesis of nano-selenium
by Tetrahymena thermophila SB210. Enzyme and Microbial Technology 95: 185-191. https://doi.org/10.1016/j.enzmictec.2016.08.017
Daryabor,
G., Atashzar, M.R., Kabelitz,
D., Meri, S. & Kalantar, K. 2020. The effects of
Type 2 diabetes mellitus on organ metabolism and the immune system. Frontiers
in Immunology 11(July). https://doi.org/10.3389/fimmu.2020.01582
Deng,
W., Wang, H., Wu, B. & Zhang, X. 2019. Selenium-layered nanoparticles
serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the
antidiabetic effect. Acta Pharmaceutica Sinica B 9(1):
74-86. https://doi.org/10.1016/j.apsb.2018.09.009
Deng,
W., Xie, Q., Wang, H., Ma, Z., Wu, B. & Zhang, X.
2017. Selenium nanoparticles as versatile carriers for oral delivery of
insulin: Insight into the synergic antidiabetic effect and mechanism. Nanomedicine: Nanotechnology, Biology, and
Medicine 13(6): 1965-1974. https://doi.org/10.1016/j.nano.2017.05.002
Dubey,
P., Thakur, V. & Chattopadhyay, M. 2020. Role of minerals and trace
elements in diabetes and insulin resistance. Nutrients 12(6): 1-17.
https://doi.org/10.3390/nu12061864
El-Borady, O.M., Othman, M.S., Atallah,
H.H. & Abdel Moneim, A.E. 2020. Hypoglycemic potential of selenium nanoparticles capped
with polyvinyl-pyrrolidone in streptozotocin-induced
experimental diabetes in rats. Heliyon 6(5). https://doi.org/10.1016/j.heliyon.2020.e04045
Elksnis,
A., Martinell, M., Eriksson, O. & Espes, D. 2019. Heterogeneity of metabolic defects in Type
2 diabetes and its relation to reactive oxygen species and alterations in
beta-cell mass. Frontiers in Physiology 10(FEB): 1-13.
https://doi.org/10.3389/fphys.2019.00107
El-Ramady, H.R., Domokos-Szabolcsy,
É., Abdalla, N.A., Alshaal,
T.A., Shalaby, T.A., Sztrik,
A., Prokisch, J. & Fári,
M. 2014. Selenium and nano-selenium in
agroecosystems. Environmental Chemistry Letters. Springer Verlag. https://doi.org/10.1007/s10311-014-0476-0
El-Saadony, M.T., Saad, A.M., Taha, T.F., Najjar, A.A., Zabermawi, N.M., Nader, M.M., AbuQamar,
S.F., El-Tarabily, K.A. & Salama,
A. 2021. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human
breast milk. Saudi Journal of Biological Sciences 28(12): 6782-6794. https://doi.org/10.1016/j.sjbs.2021.07.059
Ezaki,
O. 1990. The insulin-like effects of selenate in rat
adipocytes. Journal of Biological Chemistry 265(2): 1124-1128.
https://doi.org/10.1016/s0021-9258(19)40166-x
Fakhruddin,
S., Alanazi, W. & Jackson, K.E. 2017.
Diabetes-induced reactive oxygen species: Mechanism of their generation and
role in renal injury. Journal of Diabetes Research 2017: 8379327.
https://doi.org/10.1155/2017/8379327
Ferro,
C., Florindo, H.F. & Santos, H.A. 2021. Selenium
nanoparticles for biomedical applications: From development and
characterization to therapeutics. Advanced Healthcare Materials 10(16):
e2100598. https://doi.org/10.1002/adhm.202100598
Festa,
A., Agostino, R.D., Tracy, R.P. & Haffner, S.M.
2002. Plasminogen activator inhibitor-1 predict the insulin resistance
atherosclerosis study. Diabetes 51(May 2001): 1131-1137.
Fontenelle,
L.C., Feitosa, M.M., Silva Morais,
J.B., Severo, J.S., Coelho de Freitas, T.E., Beserra, J.B., Henriques, G.S.
& do Nascimento Marreiro,
D. 2018. The role of selenium in insulin resistance. Brazilian Journal of
Pharmaceutical Sciences 54(1): 1-11. https://doi.org/10.1590/s2175-97902018000100139
Francis,
T., Rajeshkumar, S., Roy, A. & Lakshmi, T. 2020.
Anti-inflammatory and cytotoxic effect of arrow root mediated selenium
nanoparticles. Pharmacognosy Journal 12(6): 1363-1367. https://doi.org/10.5530/PJ.2020.12.188
Frandsen,
C.S., Dejgaard, T.F. & Madsbad,
S. 2016. Non-insulin drugs to treat hyperglycaemia in Type 1 diabetes mellitus. The Lancet Diabetes and Endocrinology 4(9): 766-780.
https://doi.org/10.1016/S2213-8587(16)00039-5
Galicia-Garcia,
U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., Ostolaza, H. & Martín, C. 2020. Pathophysiology of Type
2 diabetes mellitus. International Journal of Molecular Sciences 21(17):
6275. https://doi.org/10.3390/ijms21176275
Gao,
F., Zhao, J., Liu, P., Ji, D., Zhang, L., Zhang, M., Li, Y. & Xiao, Y.
2020. Preparation and in vitro evaluation of multi-target-directed
selenium-chondroitin sulfate nanoparticles in
protecting against the Alzheimer’s disease. International Journal of
Biological Macromolecules 142(January): 265-276.
https://doi.org/10.1016/j.ijbiomac.2019.09.098
Ghosh,
S., Ahmad, R., Banerjee, K., AlAjmi, M.F. &
Rahman, S. 2021. Mechanistic aspects of microbe-mediated nanoparticle
synthesis. Frontiers in Microbiology 12(May): 1-12.
https://doi.org/10.3389/fmicb.2021.638068
Guo,
L., Xiao, J., Liu, H. & Liu, H. 2020. Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient
mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics 12(2): 204-217.
https://doi.org/10.1039/c9mt00215d
Hamza,
R.Z. & Diab, A.E.A.A. 2020. Testicular protective
and antioxidant effects of selenium nanoparticles on monosodium
glutamate-induced testicular structure alterations in male mice. Toxicology
Reports 7(January): 254-260. https://doi.org/10.1016/j.toxrep.2020.01.012
Hashem,
A.H., Aly Khalil, A.M., Reyad, A.M. & Salem, S.S.
2021. Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biological Trace Element
Research 199(10): 3998-4008. https://doi.org/10.1007/s12011-020-02506-z
Hassan,
I., Ebaid, H., Al-Tamimi,
J., Habila, M.A., Alhazza,
I.M. & Rady, A.M. 2021. Selenium nanoparticles
mitigate diabetic nephropathy and pancreatopathy in
rat offspring via inhibition of oxidative stress. Journal of King Saud
University - Science 33(1): 101265.
https://doi.org/10.1016/j.jksus.2020.101265
Hei,
Y.J., Farahbakhshian, S., Chen, X., Battell, M.L. & McNeill, J.H. 1998. Stimulation of MAP
kinase and S6 kinase by vanadium and selenium in rat adipocytes. Molecular
and Cellular Biochemistry 178(1-2): 367-375.
https://doi.org/10.1023/A:1006819906820
Hojs,
N.V., Bevc, S., Ekart, R.
& Hojs, R. 2020. Oxidative stress markers in
chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 9(10): 1-22. https://doi.org/10.3390/antiox9100925
Hosnedlova,
B., Kepinska, M., Skalickova,
S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q.,
Baron, M., Melcova, M., Opatrilova,
R., Zidkova, J., Bjørklund,
G., Sochor, J. & Kizek,
R. 2018. Nano-selenium and its nanomedicine applications: A critical review. International Journal of Nanomedicine 13: 2107-2128.
https://doi.org/10.2147/IJN.S157541
Huang,
X., Chen, X., Chen, Q., Yu, Q., Sun, D. & Liu, J. 2016. Investigation of
functional selenium nanoparticles as potent antimicrobial agents against
superbugs. Acta Biomaterialia 30: 397-407. https://doi.org/10.1016/j.actbio.2015.10.041
Huang,
Z., Rose, A.H. & Hoffmann, P.R. 2012. The role of selenium in inflammation
and immunity: From molecular mechanisms to therapeutic opportunities. Antioxidants
and Redox Signaling 16(7): 705-743.
https://doi.org/10.1089/ars.2011.4145
Ighodaro,
O.M. & Akinloye, O.A. 2018. First line defence antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and
Glutathione Peroxidase (GPX): Their fundamental role in the entire antioxidant
defence grid. Alexandria Journal of Medicine 54(4): 287-293.
https://doi.org/10.1016/j.ajme.2017.09.001
Ikram,
M., Javed, B., Raja, N.I. & Mashwani,
Z.U.R. 2021. Biomedical potential of plant-based selenium nanoparticles: A
comprehensive review on therapeutic and mechanistic aspects. International
Journal of Nanomedicine 16: 249-268.
https://doi.org/10.2147/IJN.S295053
International
Diabetes Federation. 2021. IDF Diabetes Atlas. Brussels, Belgium.
Jablonska,
E., Reszka, E., Gromadzinska,
J., Wieczorek, E., Krol,
M.B., Raimondi, S., Socha, K., Borawska,
M.H. & Wasowicz, W. 2016. The effect of selenium
supplementation on glucose homeostasis and the expression of genes related to
glucose metabolism. Nutrients 8(12): 1-12.
https://doi.org/10.3390/nu8120772
Jadoun,
S., Arif, R., Jangid, N.K.
& Meena, R.K. 2021. Green synthesis of
nanoparticles using plant extracts: A review. Environmental Chemistry
Letters 19(1): 355-374. https://doi.org/10.1007/s10311-020-01074-x
Jha,
J.C., Ho, F., Dan, C. & Jandeleit-Dahm,
K. 2018. A causal link between oxidative stress and inflammation in
cardiovascular and renal complications of diabetes. Clinical Science 132(16): 1811-1836. https://doi.org/10.1042/CS20171459
Jin,
Y., He, Y., Liu, L., Tao, W., Wang, G., Sun, W., Pei, X., Xiao, Z., Wang, H.
& Wang, M. 2021. Effects of supranutritional selenium nanoparticles on immune and antioxidant capacity in Sprague-Dawley
rats. Biological Trace Element Research 199(12): 4666-4674.
https://doi.org/10.1007/s12011-021-02601-9
Karalis,
D.T. 2019. The beneficiary role of selenium in Type II diabetes: A longitudinal
study. Cureus 11(12): e6443.
https://doi.org/10.7759/cureus.6443
Khater,
S.I., Abdel Rahman Mohamed, A., Arisha, A.H., Ebraheim, L.L.M., El-Mandrawy,
S.A.M., Nassan, M.A., Mohammed, A.T. & Abdo, S.A. 2021. Stabilized-chitosan selenium nanoparticles
efficiently reduce renal tissue injury and regulate the expression pattern of
aldose reductase in the diabetic-nephropathy rat model. Life Sciences 279: 119674. https://doi.org/10.1016/j.lfs.2021.119674
Kieliszek,
M. 2019. Selenium-fascinating microelement, properties and sources in food. Molecules 24(7): 1298. https://doi.org/10.3390/molecules24071298
Kora,
A.J. & Rastogi, L. 2016. Biomimetic synthesis of
selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach
for conversion of selenite. Journal of Environmental Management 181:
231-236. https://doi.org/10.1016/j.jenvman.2016.06.029
Kumar,
G.S., Kulkarni, A., Khurana, A., Kaur, J. & Tikoo, K. 2014. Selenium nanoparticles involve HSP-70 and
SIRT1 in preventing the progression of Type 1 diabetic nephropathy. Chemico-Biological Interactions 223: 125-133.
https://doi.org/10.1016/j.cbi.2014.09.017
Kuršvietienė, L., Mongirdienė, A., Bernatonienė, J., Šulinskienė,
J. & Stanevičienė, I. 2020. Selenium
anticancer properties and impact on cellular redox status. Antioxidants
(Basel) 9(1): 80. MDPI. https://doi.org/10.3390/antiox9010080
Kurutas,
E.B. 2016. The importance of antioxidants which play the role in cellular
response against oxidative/nitrosative stress:
Current state. Nutrition Journal 15(1): 1-22.
https://doi.org/10.1186/s12937-016-0186-5
Lamb,
R.E. & Goldstein, B.J. 2008. Modulating an oxidative-inflammatory cascade:
Potential new treatment strategy for improving glucose metabolism, insulin
resistance, and vascular function. International Journal of Clinical
Practice 62(7): 1087-1095. https://doi.org/10.1111/j.1742-1241.2008.01789.x
Langlais,
P., Yi, Z., Finlayson, J., Luo, M., Mapes, R., De Filippis, E., Meyer, C., Plummer, E., Tongchinsub,
P., Mattern, M. & Mandarino,
L.J. 2011. Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54(11): 2878-2889.
https://doi.org/10.1007/s00125-011-2271-9
Lara,
H.H., Guisbiers, G., Mendoza, J., Mimun,
L.C., Vincent, B.A., Lopez-Ribot, J.L. & Nash,
K.L. 2018. Synergistic antifungal effect of chitosan-stabilized selenium
nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. International Journal of Nanomedicine 13: 2697-2708.
https://doi.org/10.2147/IJN.S151285
Lian,
S., Diko, C.S., Yan, Y., Li, Z., Zhang, H., Ma, Q.
& Qu, Y. 2019. Characterization of biogenic selenium nanoparticles derived
from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9(6): 1-8.
https://doi.org/10.1007/s13205-019-1748-y
Lin,
Z.H. & Chris Wang, C.R. 2005. Evidence on the size-dependent absorption
spectral evolution of selenium nanoparticles. Materials Chemistry and
Physics 92(2-3): 591-594. https://doi.org/10.1016/j.matchemphys.2005.02.023
Liu,
Z., Ren, Z., Zhang, J., Chuang, C.C., Kandaswamy, E.,
Zhou, T. & Zuo, L. 2018. Role of ROS and
nutritional antioxidants in human diseases. Frontiers in Physiology 9(MAY):
1-14. https://doi.org/10.3389/fphys.2018.00477
MacFarquhar,
J.K. 2010. Acute selenium toxicity associated with a dietary supplement. Archives
of Internal Medicine 170(3): 256.
https://doi.org/10.1001/archinternmed.2009.495
Martindale,
J.L. & Holbrook, N.J. 2002. Cellular response to oxidative stress: Signaling for suicide and survival. Journal of Cellular
Physiology 192(1): 1-15. https://doi.org/10.1002/jcp.10119
Masarone,
M., Rosato, V., Aglitti,
A., Bucci, T., Caruso, R., Salvatore, T., Sasso, F.C., Tripodi, M.F. & Persico, M. 2017. Liver biopsy in Type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver
damage. PLoS ONE 12(6): 1-10.
https://doi.org/10.1371/journal.pone.0178473
Medina
Cruz, D., Mi, G. & Webster, T.J. 2018. Synthesis
and characterization of biogenic selenium nanoparticles with antimicrobial
properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus
aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal
of Biomedical Materials Research - Part A 106(5): 1400-1412.
https://doi.org/10.1002/jbm.a.36347
Mohamed,
A.A.R., Khater, S.I., Arisha,
A.H., Metwally, M.M.M., Mostafa-Hedeab,
G. & El-Shetry, E.S. 2021. Chitosan-stabilized
selenium nanoparticles alleviate cardio-hepatic damage in Type 2 diabetes
mellitus model via regulation of caspase, Bax/Bcl-2,
and Fas/FasL-pathway. Gene 768: 145288. https://doi.org/10.1016/j.gene.2020.145288
Mosallam,
F.M., El-Sayyad, G.S., Fathy, R.M. & El-Batal, A.I. 2018. Biomolecules-mediated synthesis of selenium
nanoparticles using Aspergillus oryzae fermented lupin extract and gamma radiation for
hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial Pathogenesis 122: 108-116.
https://doi.org/10.1016/j.micpath.2018.06.013
Muniandy,
S.S., Sasidharan, S. & Lee, H.L. 2019. Green
synthesis of Ag nanoparticles and their performance towards antimicrobial
properties. Sains Malaysiana 48(4): 851-860. https://doi.org/10.17576/jsm-2019-4804-17
Nadaroğlu, H., Güngör, A.A. & İnce, S. 2017. Synthesis of nanoparticles by green
synthesis method. International Journal of Innovative Research and Reviews 1(1): 6-9.
Nasrollahzadeh, M., Atarod, M., Sajjadi, M., Sajadi, S.M. & Issaabadi, Z. 2019. Plant-Mediated Green Synthesis of
Nanostructures: Mechanisms, Characterization, and Applications. Interface
Science and Technology 28: 199-322.
https://doi.org/10.1016/B978-0-12-813586-0.00006-7
Neha,
K., Haider, M.R., Pathak, A. & Yar, M.S. 2019. Medicinal prospects of antioxidants: A
review. European Journal of Medicinal Chemistry 178: 687-704.
https://doi.org/10.1016/j.ejmech.2019.06.010
Nelson,
A.J., Rochelau, S.K. & Nicholls, S.J. 2018.
Managing dyslipidemia in Type 2 diabetes. Endocrinology
and Metabolism Clinics of North America 47(1): 153-173. https://doi.org/10.1016/j.ecl.2017.10.004
Oguntibeju,
O.O. 2019. Type 2 Diabetes mellitus, oxidative stress and inflammation:
Examining the links. International Journal of Physiology, Pathophysiology
and Pharmacology 11(3): 45-63.
Ouyang,
J., Cai, Y., Song, Y., Gao, Z., Bai, R. & Wang,
A. 2022. Potential benefits of selenium supplementation in reducing insulin
resistance in patients with cardiometabolic diseases:
A systematic review and meta-analysis. Nutrients 14(22): 4933.
https://doi.org/10.3390/nu14224933
Pan,
Z., Huang, J., Hu, T., Zhang, Y., Zhang, L., Zhang, J., Cui, D., Li, L., Wang,
J. & Wu, Q. 2023. Protective effects of selenium nanoparticles against bisphenol A-Induced toxicity in porcine intestinal
epithelial cells. International Journal of Molecular Sciences 24(8):
7242. https://doi.org/10.3390/ijms24087242
Panahi-Kalamuei, M., Salavati-Niasari, M. & Hosseinpour-Mashkani, S.M. 2014. Facile microwave
synthesis, characterization, and solar cell application of selenium
nanoparticles. Journal of Alloys and Compounds 617: 627-632.
https://doi.org/10.1016/j.jallcom.2014.07.174
Prabhakar,
P.K., Kumar, A. & Doble, M. 2014. Combination
therapy: A new strategy to manage diabetes and its complications. Phytomedicine 21(2): 123-130. https://doi.org/10.1016/j.phymed.2013.08.020
Presentato,
A., Piacenza, E., Anikovskiy, M., Cappelletti,
M., Zannoni, D. & Turner, R.J. 2018. Biosynthesis
of selenium-nanoparticles and -nanorods as a product
of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnology 41:
1-8. https://doi.org/10.1016/j.nbt.2017.11.002
Quintana,
M., Haro-Poniatowski, E., Morales, J. & Batina, N. 2002. Synthesis of selenium nanoparticles by
pulsed laser ablation. Applied Surface Science 195(1-4): 175-186. https://doi.org/10.1016/S0169-4332(02)00549-4
Ramya,
S., Shanmugasundaram, T. & Balagurunathan,
R. 2015. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm,
anti-oxidant, wound healing, cytotoxic and anti-viral activities. Journal of
Trace Elements in Medicine and Biology 32: 30-39.
https://doi.org/10.1016/j.jtemb.2015.05.005
Rashid,
I.M., Salman, S.D., Mohammed, A.K. & Mahdi, Y.S. 2022. Green synthesis of nickle oxide nanoparticles for adsorption of dyes. Sains Malaysiana 51(2): 533-546. https://doi.org/10.17576/jsm-2022-5102-17
Rehani,
P.R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z. & Rehani, R.N. 2019. Safety and mode of
action of diabetes medications in comparison with 5-Aminolevulinic acid
(5-ALA). Journal of Diabetes Research 2019: 4267357.
https://doi.org/10.1155/2019/4267357
Ronco,
M.T., De Luján Alvarez, M., Monti, J., Carrillo,
M.C., Pisani, G., Lugano, M.C. & Carnovale, C.E. 2002. Modulation of balance between
apoptosis and proliferation by lipid peroxidation (LPO) during rat liver
regeneration. Molecular Medicine 8(12): 808-817.
https://doi.org/10.1007/bf03402085
Roy,
M., Kiremidjian-Schumacher, L., Wishe,
H.I., Cohen, M.W. & Stotzky, G. 1992. Selenium
supplementation enhances the expression of interleukin 2 receptor subunits and
internalization of interleukin. Proc. Soc. Exp. Biol. Med. 202(3):
295-301.
Ruan,
H., Miles, P.D.G., Ladd, C.M., Ross, K., Golub, T.R., Olefsky,
J.M. & Lodish, H.F. 2002. Profiling gene
transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis Factor-α. Diabetes 51(11):
3176-3188. https://doi.org/10.2337/diabetes.51.11.3176
Sadeghian,
S., Kojouri, G.A. & Mohebbi,
A. 2012. Nanoparticles of selenium as species with stronger physiological
effects in sheep in comparison with sodium selenite. Biological Trace
Element Research 146(3): 302-308. https://doi.org/10.1007/s12011-011-9266-8
Saif-Elnasr,
M., Abdel-Aziz, N. & El-Batal, A.I. 2019.
Ameliorative effect of selenium nanoparticles and fish oil on cisplatin and
gamma irradiation-induced nephrotoxicity in male albino rats. Drug and
Chemical Toxicology 42(1): 94-103.
https://doi.org/10.1080/01480545.2018.1497050
Sakamula,
R., Yata, T. & Thong-Asa,
W. 2021. Effects of alpha-mangostin encapsulated in
nanostructured lipid carriers in mice with cerebral ischemia reperfusion
injury. Sains Malaysiana 50(7): 2007-2015. https://doi.org/10.17576/jsm-2021-5007-15
Satgurunathan, T., Bhavan, P.S. & Komathi, S. 2017. Green synthesis of selenium nanoparticles
from sodium selenite using garlic extract and its enrichment on Artemia nauplii to
feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Research Journal of
Chemistry and Environment 21(10): 1-12.
Sentkowska,
A. & Pyrzyńska, K. 2022. The influence of
synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 27(8): 2486. https://doi.org/10.3390/molecules27082486
Shah,
C.P., Dwivedi, C., Singh, K.K., Kumar, M. &
Bajaj, P.N. 2010. Riley oxidation: A forgotten name reaction for synthesis of
selenium nanoparticles. Materials Research Bulletin 45(9): 1213-1217.
https://doi.org/10.1016/j.materresbull.2010.05.013
Shinohara,
T., Takahashi, N., Ooie, T., Hara, M., Shigematsu, S., Nakagawa, M., Yonemochi,
H., Saikawa, T. & Yoshimatsu,
H. 2006. Phosphatidylinositol 3-Kinase-Dependent activation of Akt, an essential signal for hyperthermia-induced
heat-shock protein 72, is attenuated in streptozotocin-induced
diabetic heart. Diabetes 55(5): 1307-1315. https://doi.org/10.2337/db05-0266
Shoeibi,
S. & Mashreghi, M. 2017. Biosynthesis of selenium
nanoparticles using Enterococcus faecalis and
evaluation of their antibacterial activities. Journal of Trace Elements in
Medicine and Biology 39: 135-139. https://doi.org/10.1016/j.jtemb.2016.09.003
Singh,
V.P., Bali, A., Singh, N. & Jaggi, A.S. 2014.
Advanced glycation end products and diabetic complications. Korean Journal
of Physiology and Pharmacology 18(1): 1-14.
https://doi.org/10.4196/kjpp.2014.18.1.1
Steinbrenner,
H., Speckmann, B., Pinto, A. & Sies, H. 2010. High selenium intake and increased diabetes
risk: Experimental evidence for interplay between selenium and carbohydrate
metabolism. Journal of Clinical Biochemistry and Nutrition 48(1): 40-45.
https://doi.org/10.3164/jcbn.11-002FR
Takahashi,
K., Suzuki, N. & Ogra, Y. 2017. Bioavailability
comparison of nine bioselenocompounds in vitro and in vivo. International Journal of Molecular Sciences 18(3):
506. https://doi.org/10.3390/ijms18030506
Tan,
B.L., Norhaizan, M.E., Liew,
W.P.P. & Sulaiman Rahman, H. 2018. Antioxidant
and oxidative stress: A mutual interplay in age-related diseases. Frontiers
in Pharmacology 9: 1-28. https://doi.org/10.3389/fphar.2018.01162
Tinggi,
U. 2008. Selenium: Its role as antioxidant in human health. Environmental
Health and Preventive Medicine 13(2): 102-108.
https://doi.org/10.1007/s12199-007-0019-4
Tran,
N., Pham, B. & Le, L. 2020. Bioactive compounds in anti-diabetic plants:
From herbal medicine to modern drug discovery. Biology 9(9): 1-31.
https://doi.org/10.3390/biology9090252
Wadhwani,
S.A., Gorain, M., Banerjee, P., Shedbalkar,
U.U., Singh, R., Kundu, G.C. & Chopade, B.A. 2017. Green synthesis of selenium
nanoparticles using Acinetobacter sp. SW30:
Optimization, characterization and its anticancer activity in breast cancer
cells. International Journal of Nanomedicine 12: 6841-6855. https://doi.org/10.2147/IJN.S139212
Wan,
K.S., Hairi, N.N., Foong,
M.M., Feisul Idzwan, M., Khalijah,
M.Y. & Zainudin, M.A. 2021. Poorer attainment of hemoglobin A1C, blood pressure and LDL-Cholesterol goals
among younger adults with Type 2 diabetes. Sains Malaysiana 50(12): 3631-3645.
https://doi.org/10.17576/jsm-2021-5012-14
Wang,
H., Zhang, J. & Yu, H. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on
selenoenzymes: Comparison with selenomethionine in
mice. Free Radical Biology and Medicine 42(10): 1524-1533. https://doi.org/10.1016/j.freeradbiomed.2007.02.013
Wang,
J.J., Zhang, R.Q., Zhai, Q.Y., Liu, J.C., Li, N.,
Liu, W.X., Li, L. & Shen, W. 2019. Metagenomic analysis of gut microbiota alteration in a mouse model exposed to mycotoxin deoxynivalenol. Toxicology and Applied Pharmacology 372: 47-56. https://doi.org/10.1016/j.taap.2019.04.009
Wei,
J., Zeng, C., Gong, Q.Y., Yang, H.B., Li, X.X., Lei, G.H. & Yang, T.B.
2015. The association between dietary selenium intake and diabetes: A
cross-sectional study among middle-aged and older adults. Nutrition Journal 14: 18. https://doi.org/10.1186/s12937-015-0007-2
Wellen,
K.E. 2005. Inflammation, stress, and diabetes. Journal of Clinical
Investigation 115(5): 1111-1119. https://doi.org/lan
Westerheide,
S.D., Anckar, J., Stevens, S.M., Sistonen,
L. & Morimoto, R.I. 2009. Stress-inducible regulation of heat shock factor
1 by the Deacetylase SIRT1. Science 323(5917): 1063-1066.
https://doi.org/10.1126/science.1165946
Xu,
C., Qiao, L., Guo, Y., Ma,
L. & Cheng, Y. 2018. Preparation, characteristics and antioxidant activity
of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydrate Polymers 195:
576-585. https://doi.org/10.1016/j.carbpol.2018.04.110
Yuan,
D., He, H., Wu, Y., Fan, J. & Cao, Y. 2019. Physiologically based
pharmacokinetic modeling of nanoparticles. Journal
of Pharmaceutical Sciences 108(1): 58-72.
https://doi.org/10.1016/j.xphs.2018.10.037
Zeng,
S., Ke, Y., Liu, Y., Shen, Y., Zhang, L., Li, C.,
Liu, A., Shen, L., Hu, X., Wu, H., Wu, W. & Liu, Y. 2018. Synthesis and
antidiabetic properties of chitosan-stabilized selenium nanoparticles. Colloids
and Surfaces B: Biointerfaces 170: 115-121.
https://doi.org/10.1016/j.colsurfb.2018.06.003
Zhang,
H., Zhou, H., Bai, J., Li, Y., Yang, J., Ma, Q. & Qu, Y. 2019. Biosynthesis
of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids and Surfaces A: Physicochemical
and Engineering Aspects 571: 9-16. https://doi.org/10.1016/j.colsurfa.2019.02.070
Zhang,
J-S., Gao, X-Y., Zhang, L-D. & Bao, Y-P. 2001.
Biological effects of a nano red elemental selenium. BioFactors 15(1): 27-38.
https://doi.org/10.1002/biof.5520150103
Zhang,
J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y.
& Dong, W. 2016. ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity 2016: 4350965.
https://doi.org/10.1155/2016/4350965
Zorov,
D.B., Juhaszova, M. & Sollott,
S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiological Reviews 94(3): 909-950.
https://doi.org/10.1152/physrev.00026.2013
*Pengarang untuk surat-menyurat; email: siti.hajar@upnm.edu.my
|